
Queue Pre-load Instruction

Seite 1

Pipeline ‚Pre-load‘ Opcode Proposal 18.06.23
kaqu

An ISA on an actual hardware platform usually suffers from memory access timing penalties,
hence the usage of (instruction) caches.
These themselves require time to fill after an enforced flush (due to branching out of bounds),

To circumvent this limitation, one shall operate several simultaneous queues by dividing
the instruction cache. Four partitions seem to be a reasonable split.
Now, if there is a compiler generated (automatic) opcode, indicating the memory offset from 

As usual ‚locality‘ heuristics do apply, that is farther jumps (beyond cache) may be weighted
higher – local jumps within cache not at all etc.

Arguments against:
1. Full size better! Forget it … (K.I.S.S.)
2. switch/match/case constructs fail (as there cannot possibly be enough ‚pipelines’?)

Some examples shall clearify this (‚Address_A‘ assumed ‚out-of-cache‘, i.e. a miss):

1. Example: CALL, assumed queue #0 active
Address Mnemonics Explanations
B Some code Load a free instruction queue (here: #1) with code starting
B+1 LoadQueue Address_A
… … cycles, on an FPGA still dozens)
B+n Some code If (B+n+1)-(B+1)=delta is >= the # of cycles, stalling can be
B+n+1 CALL Address_A avoided completely!
B+n+2 …
… … On CALL: Maybe reload (B+n+2) to a third queue as well?

May still run within queue #0 but switch over to #2 if it
becomes ready?

2. Example: JMP, assumed queue #0 active
Address Mnemonics Explanations
B Some code Load a free instruction queue (here: #1) with code starting
B+1 LoadQueue Address_A
… … cycles, on an FPGA still dozens)
B+n Some code If (B+n+1)-(B+1)=delta is >= the # of cycles, stalling can be
B+n+1 JMP Address_A avoided completely!
B+n+2 …
… …

3. Example: JNE, assumed queue #0 active
Address Mnemonics Explanations
B Some code Load a free instruction queue (here: #1) with code starting
B+1 LoadQueue Address_A
… … cycles, on an FPGA still dozens)
B+n Some code If (B+n+1)-(B+1)=delta is >= the # of cycles, stalling can be
B+n+1 JNE Address_A avoided completely!

with small on-chip caches (level 0/1) this tends to happen more often than wished for.
As on-chip space is an expensive resource, caches cannot grow much.

which to load into a particular partition automatically (let’s call it a ‚pipeline‘ from now on), this
shall reduce processing stall considerably.

at ‚A‘ in advance (Memory access may take hundreds of

at ‚A‘ in advance (Memory access may take hundreds of

at ‚A‘ in advance (Memory access may take hundreds of



Queue Pre-load Instruction

Seite 2

B+n+2 Some code
… …

4. Example: RETURN, in queue <n>A return may ‚free‘ a queue immediately?
A+i RETURN

To make a reasonable judgement, it is imperative, to verify behaviour with an accordingl
adapted compiler and simulator. This will allow for testing various scenarios with different
cache sizes, pipeline lengths & weights (for different jump types & distances respectively).


	Queue Pre-load Instruction

